Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Cardiothorac Surg ; 19(1): 228, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627802

RESUMO

BACKGROUND: The ectopic superior parathyroid in the tracheoesophageal groove and paraesophageal region is rare. Hyperparathyroidism results when these glands become hyperfunctioning. That may necessitate surgical intervention in the form of parathyroidectomy, which requires a transsternal or transthoracic approach due to a deeply seated mediastinal parathyroid gland. Minimally invasive strategies have emerged recently as an alternative approach with less morbidity. CASE PRESENTATION: We present a case of the paraesophageal ectopic parathyroid gland in the superior posterior mediastinum, which was successfully treated with thoracoscopic resection. CONCLUSION: The current imaging tools improve the thoracoscopic management of mediastinal parathyroid glands. Video-assisted thoracoscopic surgery (VATS) can provide access and exposure to ectopic parathyroid adenoma with low morbidity and financial burden.


Assuntos
Mediastino , Neoplasias das Paratireoides , Humanos , Mediastino/cirurgia , Neoplasias das Paratireoides/diagnóstico por imagem , Neoplasias das Paratireoides/cirurgia , Glândulas Paratireoides/cirurgia , Paratireoidectomia/métodos , Cirurgia Torácica Vídeoassistida/métodos
2.
Clin Transl Sci ; 17(3): e13754, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38476031

RESUMO

This study examined the levels of soluble CD146 (sCD146) in plasma samples from patients with chronic obstructive pulmonary disease (COPD) and assessed the relationship between sCD146 and the severity of COPD. A total of 97 COPD patients were recruited from 20 medical centers in Jiangsu, China, including 13 stable subjects and 84 exacerbated subjects. The plasma sCD146 level in exacerbated subjects (28.77 ± 10.80 ng/mL) was significantly lower than that in stable subjects (38.84 ± 15.00 ng/mL). In the high sCD146 group, the proportion of subjects with modified Medical Research Council (mMRC) scores of 0-1 was higher, the proportion of subjects with the Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 4 was lower, and the proportion of subjects with ≥1 hospitalizations in the past year was lower. The plasma sCD146 level was negatively correlated with the COPD Assessment Test (CAT) score (r = -0.2664, p = 0.0087). Logistic regression analysis showed that sCD146 was an independent risk factor for acute exacerbation of COPD (AECOPD). Receiver operating characteristic (ROC) analysis suggested that sCD146 combined with sex, age, pulmonary function, and acute exacerbations in the past year had clinical value for the accurate identification of AECOPD, with an area under the ROC curve (AUC) of 0.908 (95% CI: 0.810-1.000, p < 0.001). In addition, there was a significant negative correlation between plasma sCD146 and S100A9 (r = -0.3939, p < 0.001).


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Biomarcadores , Fatores de Risco , Hospitalização , Progressão da Doença
4.
Int J Biol Macromol ; 262(Pt 2): 130215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365141

RESUMO

To develop ecofriendly multifunctional gel materials for sustainable flexible electronic devices, composite organohydrogels of gellan gum (GG) and polypyrrole (PPy) with an interpenetrating network structure (IPN-GG/PPy organohydrogels) were developed first time, through fabrication of GG organohydrogels followed by in-situ oxidation polymerization of pyrrole inside. Combination of water with glycerol can not only impart environment-stability to GG hydrogels but promote the mechanics remarkably, with the compressive strength amplified by 1250 % from 0.02 to 0.27 MPa. Incorporation of PPy confers electrical conductivity to the GG organohydrogel as well as promoting the mechanical performance further. The maximum conductivity of the IPN-GG/PPy organohydrogels reached 1.2 mS/cm at 25 °C, and retained at 0.6 mS/cm under -20 °C and 0.56 mS/cm after 7 days' exposure in 25 °C and 60 % RH. The compression strength of that with the maximum conductivity increases by 170 % from 0.27 to 0.73 MPa. The excellent conductivity and mechanical properties endow the IPN-GG/PPy organohydrogels good piezoresistive strain/pressure sensing behavior. Moreover, the thermo-reversible GG network bestows them shape-memory capability. The multifunctionality and intrinsic eco-friendliness is favorable for sustainable application in fields such as flexible electronics, soft robotics and artificial intelligence, competent in motion recognition, physiological signal monitoring, intelligent actuation.


Assuntos
Inteligência Artificial , Polímeros , Polissacarídeos Bacterianos , Pirróis , Condutividade Elétrica , Hidrogéis , Tempo (Meteorologia)
5.
Life Sci ; 342: 122514, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395386

RESUMO

AIMS: Pancreatic islets undergo critical development and functional maturation during the perinatal period when they are highly sensitive to microenvironment. We aim to determine the effects and mechanisms of gestational diabetes mellitus (GDM) hypermetabolic stress on glucose homeostasis in pregnant mice and functional maturation of the islets of their offspring. MAIN METHODS: Exosomes were extracted from the umbilical vein blood of individuals with or without GDM for administration to pregnant mice. The blood glucose, serum insulin, glycosylated hemoglobin, and lipopolysaccharide levels were measured in pregnant mice. The expression and localization of insulin, glucagon, PC1/3, PDX1, and p-S6 in the islets of neonatal rats were continuously monitored using immunofluorescence to evaluate their functional status. Primary islet cells were cultured and treated with GDM exosomes and exendin to determine the expression of GLP-1R, AKT, p-AKT, and p-S6 via western blotting. KEY FINDINGS: GDM exosomes induced remarkable oral glucose intolerance, hyperinsulinemia, and metabolic inflammation in pregnant mice. The islets of GDM offspring exhibited high insulin, glucagon, PC1/3, PDX1, and p-S6 expression at and after birth, and activation of the local GLP-1/GLP-1R axis. The functional maturation of normal-offspring islets did not commence until after birth, while it was activated prior to birth in GDM offspring, seriously disrupting the whole process. GDM exosomes activated the GLP-1/GLP-1R axis between α and ß cells, and stimulated functional maturation of ß cells via the Akt-mTORC1-pS6 pathway. SIGNIFICANCE: These findings provide preliminary insights into the mechanisms underlying the high incidence of diabetes in the offspring of mothers with GDM.


Assuntos
Diabetes Gestacional , Exossomos , Gravidez , Feminino , Humanos , Camundongos , Animais , Ratos , Glucagon , Exossomos/metabolismo , Proteínas Proto-Oncogênicas c-akt , Insulina/metabolismo , Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Homeostase , Glucose/metabolismo
6.
Aesthetic Plast Surg ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347131

RESUMO

BACKGROUND: Autophagy is a cellular self-protection mechanism. The upregulation of adipose-derived stem cells' (ADSCs) autophagy can promote fat graft survival. However, the effect of interfering with adipocyte autophagy on graft survival is still unknown. In addition, autophagy is involved in adipocyte dedifferentiation. We investigated the effect of autophagy on adipocyte dedifferentiation and fat graft survival. METHODS: The classic autophagy regulatory drugs rapamycin (100 nM) and 3-methyladenine (3-MA; 10 mM) were used to treat adipocytes, adipocyte dedifferentiation was observed, and their effects on ADSCs were detected. In our experiments, 100 nM rapamycin, 10 mM 3-MA and saline were mixed with human adipose tissue and transplanted into nude mice. At 2, 4, 8 and 12 weeks postoperatively, the grafts were harvested for histological and immunohistochemical analysis. RESULTS: Rapamycin and 3-MA can promote and inhibit adipocyte dedifferentiation by regulating autophagy. Both drugs can inhibit ADSC proliferation, and 10 mM 3-MA can inhibit ADSC adipogenesis. At weeks 8 and 12, the volume retention rate of the rapamycin group (8 weeks, 64.77% ± 6.36%; 12 weeks, 56.13% ± 4.73%) was higher than the control group (8 weeks, 52.62% ± 4.04%; P < 0.05; 12 weeks, 43.17% ± 6.02%; P < 0.05) and the rapamycin group had more viable adipocytes and better vascularization. Compared with the control group, the volume retention rate, viable adipocytes and vascularization of the 3-MA group decreased. CONCLUSIONS: Rapamycin can promote adipocyte dedifferentiation by upregulating autophagy to promote fat graft survival. 3-MA can inhibit graft survival, but its mechanism includes the inhibition of adipocyte dedifferentiation and ADSC proliferation and adipogenesis. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

7.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397082

RESUMO

Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfoxide and the photosystem II D1 protein through molecular docking and molecular dynamics simulations. This research demonstrates that brassicanate A sulfoxide interacts with the photosystem II D1 protein by forming hydrogen bonds with Phe-261 and His-214. The successful expression of the photosystem II D1 protein in an insect cell/baculovirus system validated the molecular docking and dynamics simulations. Biolayer interferometry experiments elucidated that the affinity constant of brassicanate A sulfoxide with photosystem II was 2.69 × 10-3 M, suggesting that brassicanate A sulfoxide can stably bind to the photosystem II D1 protein. The findings of this study contribute to the understanding of the mode of action of brassicanate A sulfoxide and also aid in the development of natural-product-based photosynthesis-inhibiting herbicides.


Assuntos
Herbicidas , Herbicidas/química , Complexo de Proteína do Fotossistema II/metabolismo , Simulação de Acoplamento Molecular , Fotossíntese , Plantas Daninhas/metabolismo , Sulfóxidos
8.
J Acoust Soc Am ; 155(1): 156-170, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180152

RESUMO

Piezoelectric composite materials (PCMs) with shunt damping circuits are used widely in hydroacoustics because of the flexible adjustability of their parameters. PCMs offer good underwater sound absorption, but shortcomings remain, such as poor low-frequency sound absorption, narrow bandwidth, and a single dissipation mechanism. In this paper, the tunable underwater sound absorption of a 0-3 PCM combined with a cavity structure and shunt circuit (PCMC) is studied systematically. First, the equivalent material parameters of 0-3 PCM are derived based on the Yamada model, and then a theoretical electroacoustic model is established for solving the absorption coefficient and is mutually verified with the numerical simulation method. On this basis, the tunable absorption characteristics of the structure are analyzed. The results show that coupling the energy dissipation mechanism of 0-3 PCM with the acoustic mechanism of the cavity structure not only achieves strong absorption at lower frequencies but also enriches the absorption mode in the mid-high frequencies by connecting the shunt circuits. Moreover, the influence of piezoelectric control variables and acoustic cavity morphology characteristics on structural sound absorption performance is further explored. Finally, the acoustic performance of PCMC is improved further via shape optimization and parameter optimization.

9.
Sci Rep ; 14(1): 2027, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263413

RESUMO

Vehicle re-identification (Re-ID) involves identifying the same vehicle captured by other cameras, given a vehicle image. It plays a crucial role in the development of safe cities and smart cities. With the rapid growth and implementation of unmanned aerial vehicles (UAVs) technology, vehicle Re-ID in UAV aerial photography scenes has garnered significant attention from researchers. However, due to the high altitude of UAVs, the shooting angle of vehicle images sometimes approximates vertical, resulting in fewer local features for Re-ID. Therefore, this paper proposes a novel dual-pooling attention (DpA) module, which achieves the extraction and enhancement of locally important information about vehicles from both channel and spatial dimensions by constructing two branches of channel-pooling attention (CpA) and spatial-pooling attention (SpA), and employing multiple pooling operations to enhance the attention to fine-grained information of vehicles. Specifically, the CpA module operates between the channels of the feature map and splices features by combining four pooling operations so that vehicle regions containing discriminative information are given greater attention. The SpA module uses the same pooling operations strategy to identify discriminative representations and merge vehicle features in image regions in a weighted manner. The feature information of both dimensions is finally fused and trained jointly using label smoothing cross-entropy loss and hard mining triplet loss, thus solving the problem of missing detail information due to the high height of UAV shots. The proposed method's effectiveness is demonstrated through extensive experiments on the UAV-based vehicle datasets VeRi-UAV and VRU.

10.
Allergy Asthma Immunol Res ; 16(1): 71-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38262392

RESUMO

PURPOSE: The roles and mechanisms of long noncoding RNAs (lncRNAs) in T helper 2 (Th2) differentiation from allergic asthma are poorly understood. We aimed to explore a novel lncRNA, LincR-protein phosphatase 2 regulatory subunit B' gamma (PPP2R5C), in Th2 differentiation in a mouse model of asthma. METHODS: LincR-PPP2R5C from RNA-seq data of CD4+ T cells of asthma-like mice were validated and confirmed by quantitative reverse transcription polymerase chain reaction, northern blotting, nuclear and cytoplasmic separation, and fluorescence in situ hybridization (FISH). Lentiviruses encoding LincR-PPP2R5C or shRNA were used to overexpress or silence LincR-PPP2R5C in CD4+ T cells. The interactions between LincR-PPP2R5C and PPP2R5C were explored with western blotting, chromatin isolation by RNA purification assay, and fluorescence resonance energy transfer. An ovalbumin-induced acute asthma model in knockout (KO) mice (LincR-PPP2R5C KO, CD4 conditional LincR-PPP2R5C KO) was established to explore the roles of LincR-PPP2R5C in Th2 differentiation. RESULTS: LncR-PPP2R5C was significantly higher in CD4+ T cells from asthmatic mice ex vivo and Th2 cells in vitro. The lentivirus encoding LincR-PPP2R5C suppressed Th1 differentiation; in contrast, the short hairpin RNA (shRNA) lentivirus decreased LincR-PPP2R5C and Th2 differentiation. Mechanistically, LincR-PPP2R5C deficiency suppressed the phosphatase activity of the protein phosphatase 2A (PP2A) holocomplex, resulting in a decline in Th2 differentiation. The formation of an RNA-DNA triplex between LincR-PPP2R5C and the PPP2R5C promoter enhanced PPP2R5C expression and activated PP2A. LincR-PPP2R5C KO and CD4 conditional KO decreased Th2 differentiation, airway hyperresponsiveness and inflammatory responses. CONCLUSIONS: LincR-PPP2R5C regulated PPP2R5C expression and PP2A activity by forming an RNA-DNA triplex with the PPP2R5C promoter, leading to Th2 polarization in a mouse model of acute asthma. Our data presented the first definitive evidence of lncRNAs in the regulation of Th2 cells in asthma.

11.
Hum Cell ; 37(1): 229-244, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040867

RESUMO

Autologous fat grafting represents a reconstructive technique but is limited by unstable graft retention. Based on existing reports and bioinformatics prediction, we hypothesized that delivering exosomes from human adipose-derived stem/stromal cells (hADSC-Exo) would increase fat graft survival and further explore the mechanism. hADSC-Exo were extracted and identified. An autologous fat grafting model was established using donor and recipient mice, followed by hADSC-Exo treatment. hADSC-Exo promoted the retention of autologous fat grafts in mice, along with increased adipocyte activity, angiogenesis, and decreased inflammation in grafts. Moreover, hADSC-Exo potentiated the adipose differentiation of 3T3-L1 cells, enhanced the angiogenic and migratory capacity of human umbilical vein endothelial cells, and inhibited the inflammation and viability of RAW 264.7 cells. The therapeutic effect of hADSC-Exo on fat grafting was associated with the delivery of microRNA (miR)-423-5p. Deletion of miR-423-5p in Exo impaired the function of hADSC-Exo on fat retention. miR-423-5p bound to DVL3 to suppress DVL3 expression, and DVL3 deletion promoted adipose differentiation of 3T3-L1 cells. In conclusion, our findings further widen the theoretical basis of the clinical application of hADSC-Exo in autologous fat grafts.


Assuntos
Exossomos , MicroRNAs , Humanos , Camundongos , Animais , Adipogenia/genética , Tecido Adiposo , Exossomos/metabolismo , Sobrevivência de Enxerto/fisiologia , Adipócitos , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Estromais/metabolismo , Inflamação , Proteínas Desgrenhadas/metabolismo
12.
Environ Res ; 241: 117639, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972811

RESUMO

In this study, CuFe2O4/CuS composite photocatalysts were successfully synthesized for the activation of peroxynomosulfate to remove ciprofloxacin from wastewater. The structural composition and morphology of the materials were analyzed by XRD, SEM, TEM, and Raman spectroscopy. The electrochemical properties of the samples were tested by an electrochemical workstation. The band gap of the samples was calculated by DFT and compared with the experimental values. The effects of different catalysts, oxidant PMS concentrations, and coexisting ions on the experiments were investigated. The reusability and stability of the photocatalysts were also investigated. The mechanism of the photocatalytic degradation process was proposed based on the free radical trapping experiment. The results show that the p-p heterojunction formed between the two contact surfaces of the CuFe2O4 nanoparticle and CuS promoted the charge transfer between the interfaces and inhibited the recombination of electrons and holes. CuFe2O4-5/CuS photocatalyst has the best catalytic activity, and the removal rate of ciprofloxacin is 93.7%. The intermediates in the degradation process were tested by liquid chromatography-mass spectrometry (LC-MS), and the molecular structure characteristics of ciprofloxacin were analyzed by combining with DFT calculations. The possible degradation pathways of pollutants were proposed. This study reveals the great potential of the photocatalyst CuFe2O4/CuS in the activation of PMS for the degradation of ciprofloxacin wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxidos/química , Ciprofloxacina , Poluentes Químicos da Água/química , Oxidantes
13.
Sci Total Environ ; 912: 168756, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008318

RESUMO

Dynamic temperature control strategies are feasible for enhancing energy flexibility and reducing energy consumption in buildings. However, guidelines for designing such dynamic thermal environments are lacking. In this study, 30 participants were recruited to undergo four experimental cycles formed by combining two temperature ranges (25-28 °C and 26-29 °C) and two temperature change rates (3 °C/h and 6 °C/h). Variations in the subjective perception and physiological responses with time were recorded throughout the experiments. The participants reported cooler thermal sensation and better thermal comfort for the same temperature during the ramp-down phase than during the ramp-up phase, which was more pronounced at faster temperature changes. The limits on temperature variations in the current standards underestimate the thermal acceptability of people. Although the temperature cycles exceeded the limits in the standards, sustained thermal comfort and high thermal acceptability were achieved when the temperature changed within 25-28 °C. At a rapid 6 °C/h change rate, the thermal sensation briefly deviated from the comfort zone when Top changed within 26-29 °C, suggesting that the limits should be set relative to the temperature change span. The comfortable temperature ranges for change rates of 3 °C/h and 6 °C/h in summer conditions were 22.8-28.7 °C and 22.8-28.4 °C, respectively, which are broader than the recommended indoor temperature range for summer in the Chinese standard. These findings indicate the potential of temperature variations to extend the thermal comfort zones while consuming less energy without requiring additional cooling devices.


Assuntos
Temperatura Baixa , Sensação Térmica , Humanos , Temperatura , Estações do Ano , Ambiente Construído
14.
Environ Pollut ; 341: 122932, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979651

RESUMO

Intensive livestock farming has been implicated as a notorious hotspot for antibiotic resistance genes (ARGs) due to the excessive or inappropriate use of in-feed antibiotics over the past few decades. Since China implemented a ban on the use of antibiotics in animal feed since 2020, the dissemination of ARGs in the vicinity of feedlots has remained unclear. This study presents a case study that aims to investigate the dispersal of antibiotics and ARGs from a chicken feedlot (established in 2020) to the adjacent aquatic and soil environments. Comparing the sample collected from upstream area, the water and sediment samples from midstream and downstream areas showed an increase in total antibiotic residues and metal content (Cu and Zn) by 4.2-5.3 fold and 1.3-22.6 fold, respectively. The downstream water samples exhibited a 2.49-2.93-fold increase in the abundance of ARGs and a 1.48-1.75-fold increase in the abundance of metal resistance genes (MRGs). The results of Pearson correlation and metagenome-assembled genome revealed a tendency for the co-occurrence of ARGs and MRGs. The dissemination of ARGs and MRGs is primarily driven by tetracycline, tylosin, Cu, and, Mn, with mobile genetic elements playing a more significant role than bacterial communities. These findings shed light on the overlooked co-dispersal pattern of ARGs and MRGs in the environment surrounding feedlots, particularly in the context of banning in-feed veterinary antibiotics.


Assuntos
Antibacterianos , Galinhas , Animais , Antibacterianos/farmacologia , Antibacterianos/análise , Genes Bacterianos , Bactérias/genética , Metais , Água
15.
Thorac Cancer ; 15(4): 327-338, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130074

RESUMO

BACKGROUND: Triosephosphate isomerase 1 (TPI1), as a widely involved glycolytic enzyme, plays a significant role in glucose metabolism and is highly expressed in various tumors. However, its role in lung adenocarcinoma (LUAD) remains incompletely understood. METHODS: Through bioinformatic analysis, we identified a positive association between high expression of TPI1 and metastasis in LUAD. Western blot, RT-qPCR, wound healing assays and transwell experiments, were employed to investigate potential mechanisms. RESULTS: In this study, bioinformatic analysis showed that high expression of TPI1 was associated with poor prognosis in LUAD patients. We examined the expression of TPI1 in 29 paired LUAD tissues and found that TPI1 expression was higher in LUAD tissues than in paired adjacent noncancerous tissues. Meanwhile, overexpression of TPI1 promoted the epithelial-mesenchymal transition (EMT) process in LUAD cells, while silencing TPI1 weakened the EMT process. Furthermore, TPI1 was shown to regulate EMT through the MAPK/ERK signaling pathway. CONCLUSION: TPI1 promotes LUAD metastasis by activating the MAPK/ERK signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia
16.
J Colloid Interface Sci ; 658: 966-975, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157620

RESUMO

Photocatalytic CO2 reduction to generate high value-added and renewable chemicals is of great potential in facilitating the realization of closed-loop and carbon-neutral hydrogen economy. Stabilizing and accelerating the formation of COCO* intermediate is crucial to achieve high-selectivity ethane production. Herein, a novel 3D/2D NiSe2/g-C3N4 heterostructure that mesoscale hedgehog nickel selenide (NiSe2) grown on the ultrathin g-C3N4 nanosheets were synthesized via a successively high temperature calcination process and in-situ thermal injection method for the first time. The optimum 2.7 % NiSe2/g-C3N4 heterostructure achieved moderate C2H6 generation rate of 46.1 µmol·g-1·h-1 and selectivity of 97.5 % without any additional photosensitizers and sacrificial agents under light illumination. Based on the results of the theoretical calculations and experiments, the improvement of photocatalytic CO2 to C2H6 production and selectivity should be ascribed to the increased visible light absorption ability, unique 3D/2D heterostructures with promoted adsorption of CO2 molecules on the Ni active sites, the type II heterojunction with improved charge transfer dynamics and lowered interfacial transfer resistance, as well as the formation of COCO* key intermediate. This work provides an inspiration to construct efficient photocatalysts for the direct transformation of CO2 to multicarbon products (C2+).

17.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38047515

RESUMO

The research and development of absorbing materials with high absorbing capacity, wide effective absorption bandwidth, and lightweight has always been interesting. In this research, a facile hydrothermal method was used to prepare MnFe2O4, and the grain size of MnFe2O4 decreased with increasing hydrothermal temperature. When the size of MnFe2O4 nanoparticles is less than 10 nm, its quantum size effect and surface effect make its electromagnetic microwave absorption performance greatly optimized. When the thickness of MnFe2O4-110 °C is 2.57 mm, the minimum reflection loss (RLmin) is -35.28 dB. Based on this, light porous diatomite and a three-dimensional polyaniline network are introduced. Diatomite is used as the base material to effectively reduce the agglomeration of MnFe2O4 quantum dots. The relatively high surface area introduced by a three-dimensional network of polyaniline promotes the orientation, interfacial polarization, multiple relaxation, and impedance matching, thereby generating further dielectric loss. Additionally, the magnetic properties of manganese ferrite and the strong electrical conductivity of polyaniline play an appropriate complementary role in electromagnetic wave absorption. The RLmin of MnFe2O4/PANI/diatomite is -56.70 dB at 11.12 GHz with an absorber layer thickness of 2.57 mm. The effective frequency bandwidth (RL < -10 dB) ranges from 9.21 to 18.00 GHz. The absorption mechanism indicates that the high absorption intensity is the result of the synergistic effect of impedance matching, conduction losses, polarization losses, and magnetic losses.

18.
Inflamm Res ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150024

RESUMO

BACKGROUND: The aim of this study was to investigate the impact of Porphyromonas gingivalis (P. gingivalis) on the progression of oral squamous cell carcinoma (OSCC) through neutrophil extracellular traps (NETs) in the tumor immune microenvironment. METHODS: The expression of NETs-related markers was identified through immunohistochemistry, immunofluorescence, and Western blotting in different clinical stages of OSCC samples. The relationship between NETs-related markers and clinicopathological characteristics in 180 samples was analyzed using immunohistochemistry data. Furthermore, the ability to predict the prognosis of OSCC patients was determined by ROC curve analysis and survival analysis. The effect of P. gingivalis on the release of NETs was identified through immunofluorescence and immunohistochemistry, both in vitro and in vivo. CAL27 and SCC25 cell lines were subjected to NETs stimulation to elucidate the influence of NETs on various cellular processes, including cell proliferation, migration, invasion, and metastasis in vitro. Furthermore, the impact of NETs on the growth and metastatic potential of OSCC was assessed using in vivo models involving tumor-bearing mice and tumor metastasis mouse models. RESULTS: Immunochemistry analysis revealed a significant correlation between the NETs-related markers and clinical stage, living status as well as TN stage. P. gingivalis has demonstrated its ability to effectively induce the release of NETs both in vivo and in vitro. NETs have the potential to facilitate cell migration, invasion, and colony formation. Moreover, in vivo experiments have demonstrated that NETs play a pivotal role in promoting tumor metastasis. CONCLUSION: High expression of NETs-related markers demonstrates a strong correlation with the progression of OSCC. Inhibition of the NETs release process stimulated by P. gingivalis and targeted NETs could potentially open up a novel avenue in the field of immunotherapy for patients afflicted with OSCC.

19.
Aesthet Surg J ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37943807

RESUMO

BACKGROUND: Enhancing graft fat survival remains a paramount challenge in autologous fat transplantation surgeries. Dedifferentiated fat cells (DFATs) and adipose-derived stem cells (ASCs) represent two pivotal cells with potential to improve fat graft survival rates. OBJECTIVES: This study aimed to compare the effectiveness of DFATs and ASCs in promoting fat graft survival, emphasizing their adipogenic and angiogenic capabilities. METHODS: Both in vitro and in vivo experiments were conducted. In vitro assessments compared adipogenesis, angiogenesis, osteogenesis, chondrogenesis, cell migration abilities, and surface markers. For in vivo evaluation, a cell-assisted lipotransfer (CAL) animal model was employed to gauge graft volume retention and histological morphology. Analysis techniques included hematoxylin and eosin staining, western blotting, and qPCR. RESULTS: In vitro findings suggested a slight superiority of DFATs in adipogenesis and angiogenesis compared to ASCs. In vivo tests demonstrated both cell types surpassed the control in terms of graft volume retention, with the DFATs group marginally outperforming in retention rates and the ASC group presenting a slightly enhanced graft tissue structure. CONCLUSIONS: Our study underscores the distinct advantages of DFATs and ASCs in bolstering fat graft survival, offering potentially novel insights for plastic surgeons aiming to elevate fat graft survival rates.

20.
Int J Med Inform ; 178: 105198, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37672982

RESUMO

BACKGROUND: The continued development of information technology has led to the emergence of online medical consultation platforms. Online virtual doctor teams, a new model in online medical care, have received significant attention for their ability to provide increased social support to patients. Many scholars have explored the role of social support in doctor-patient communication, usually focusing on a linear relationship between the impact of social support on medical outcomes. In the present study, we will explore the existence of a nonlinear relationship between the two. METHODS: In the present study, we use doctor teams from a leading online consultation platform in China--Haodf online (https://www.Haodf.com), as our research object. In total, 610 doctor teams and 413,778 consultation records spanning from June 2017 to November 2019 are collected and used to explore how social support supplied by doctor teams during interactive communication would affect the establishment of long-term doctor-patient relationships. We also explore the moderating role of team leadership type in this process. From the perspective of social support theory, we select representative factors of informational support and emotional support provided by doctor teams, namely, medical term use and emotional expression. We use text and sentiment analysis methods to extract social support contained in the texts of online doctor team-patient interactions and classify doctor teams into strong and weak leadership types based on leader-member status distance. Further, we used a logistic regression model to empirically analyze the nonlinear relationship between social support and long-term doctor-patient relationship establishment and the moderating effects of team leadership types in this process. RESULTS: The present results show that inverted U-shaped relationships exist among medical term use, emotional expression, and long-term doctor-patient relationship establishment, respectively. Doctor teams with strong leadership type make the inverted U-shaped curve between medical term use and long-term doctor-patient relationship establishment flatter than teams with weak leadership type. CONCLUSION: In the present study, we enrich the application of social support theory in the field of online health consultation and provide suggestions for how different types of online doctor teams provide social support to patients.


Assuntos
Relações Médico-Paciente , Médicos , Humanos , Liderança , Encaminhamento e Consulta , Apoio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...